
Dynamic Performance Profiling of Cloud Caches

Hjortur Bjornsson
University of Iceland

Gregory Chockler
Royal Holloway,

University of London

Trausti
Saemundsson

Reykjavik University

Ymir Vigfusson
Reykjavik University

In-memory object caches, such as memcached, are
critical to the success of popular web sites, such as Face-
book [3], by reducing database load and improving scal-
ability [2]. The prominence of caches implies that con-
figuring their ideal memory size has the potential for sig-
nificant savings on computation resources and energy
costs, but unfortunately cache configuration is poorly
understood. The modern practice of manually tweak-
ing live caching systems takes significant effort and may
both increase the variance for client request latencies and
impose high load on the database backend.

Contributions. We provide an efficient online algo-
rithm to estimate how an LRU cache would perform us-
ing a different memory allocation, continually exposing
a hit rate curve as a function of space (Figure 1). Our
method is lock-free and compatible with modern multi-
threaded cache servers, such as memcached.

Approach. For a cache of size n, the challenge is to
generate a hit rate curve for cache sizes ranging from 0 to
2n. First, to predict how a cache would perform beyond
the current allocation of n, we track metadata for n ad-
ditional dataless elements, so-called “ghosts” [1]. While
technically a cache miss, a hit on a ghost provides infor-
mation about how the larger cache allocation would fare
under the same workload [4].

To track statistics, our method splits the LRU stack
into a list of variably sized buckets. The first bucket rep-
resents the top of the LRU stack and the last bucket rep-
resents the tail. Whenever a cache hit occurs, the element
e causing the hit is moved to the first bucket. The stack
distance of e can then be estimated by summing up the
number of elements in buckets in front of where e was

Copyright c© 2013 by the Association for Computing Machinery, Inc.
(ACM). Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1. http://dx.doi.org/10.1145/2523616.2527081

0 1000 2000 3000
Cache size (items)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
u
m

u
la

ti
v
e
 h

it
 r

a
te

Current allocation

LRU

Figure 1: Hit rate curve. The normalized cumulative cache hit rate
achieved for cache sizes different from the current allocation.

in the list. Next, the hit rate curve is updated (Figure 2).
The elements are then aged to maintain about the same

number of elements per bucket. For aging, we can trade
off performance (constant time vs. linear in number of
buckets) for estimation accuracy. If accuracy is favored,
a global average stack distance is maintained and only
certain elements are aged.

Results. The faster algorithm, ROUNDER, achieves
over 96% accuracy measured by the mean average error
of the hit rate curve on a wide variety of cache work-
loads, compared to over 99% for the slower one. We
implemented and evaluated ROUNDER in memcached
and found negligible throughput degradation on standard
benchmarks. We conclude that online generation of hit
rate curves are both useful for provisioning and monitor-
ing, and can be made practical for large cache systems.

Figure 2: The ROUNDER algorithm. Steps to update the hit rate curve
and bucket lists of the LRU stack when item e is hit in the cache.



References
[1] M. R. Ebling, L. B. Mummert, and D. C. Steere.

Overcoming the network bottleneck in mobile com-
puting. In Proceedings of the 1st Workshop on Mo-
bile Computing Systems and Applications, WMCSA
’94, pages 34–36, Washington, DC, USA, 1994.
IEEE Computer Society.

[2] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent MemCache with dumber
caching and smarter hashing. In Proceedings of
the 10th USENIX Conference on Networked Systems
Design and Implementation, NSDI ’13, pages 385–
398. USENIX Association, 2013.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling Memcache at Facebook. In
Proceedings of the 10th USENIX conference on Net-
worked Systems Design and Implementation, NSDI
’13, pages 385–398. USENIX Association, 2013.

[4] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodol-
sky, and J. Zelenka. Informed prefetching and
caching. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles, SOSP ’95,
pages 79–95, New York, NY, USA, 1995. ACM.


